Свойства карбида вольфрама

Металл вольфрам был открыт в 1783 году и применяется в основном в промышленности. Вольфрам необычайно тверд, а плотность его вдвое больше, чем у свинца. В соединении с углеродом металл превращается в карбид вольфрама: материал по твердости сравнимый с алмазом, износостойкий и почти не реагирующий на окисление. Именно карбид вольфрама, помимо изготовления режущих деталей и сердечников снарядов, используется в ювелирном деле.

Рассматриваемое вещество представлено серым порошком в двух кристаллографических вариантах: с кубической (полукарбид) и гексагональной (монокарбид) решетками. Обе модификации встречаются в температурном диапазоне 2525 — 2755°С.

Вторая фаза ввиду отсутствия области гомогенности при отклонении от стехиометрического состава образует графит или переходит в W2C, а при температуре более 2755°С разлагается до углерода и первой фазы.

Последняя отличается обширной областью гомогенности, сокращающейся при снижении температуры.

Монокарбид вольфрама менее тверд в сравнении с полукарбидом, но способен формировать кристаллы. Второй вариант значительно более температуро- и износоустойчив. К тому же он способен к внедрению в твердые растворы.

Карбид вольфрама отличается хрупкостью, но под влиянием нагрузки проявляет пластичность полосами скольжения.

Кристаллы рассматриваемого вещества характеризуются анизотропией твердости от 13 до 22 ГПа на разных кристаллографических плоскостях.

Порошок карбида вольфрама

По сравнению со сталями карбид вольфрама прочнее, но более хрупок и менее подвержен обработке.

Несмотря на то, что температура плавления большая, термостойкость рассматриваемого материала низка. Это обусловлено отсутствием термического расширения ввиду жесткой структуры. При этом карбид вольфрама характеризуется высокой теплопроводностью. С повышением температуры данный параметр у монокарбида возрастает вдвое быстрее, чем у полукарбида.

Кольцо из карбида вольфрама

Рассматриваемые материалы имеют хорошую электропроводность, особенно полукарбид (в 4 раза выше, чем монокарбид).

Удельное электросопротивление возрастает с повышением температуры, но при этом снижается упругость. Это обуславливает обрабатываемость электрофизическими методами.

Так, при введении источника тепла в области обработки возрастает температура, способствуя размеренному разрушению структуры материала.

Твердость определяется температурой формирования карбидов в вольфрамовом порошке и (в меньшей степени) их пористостью.

С ростом температуры увеличивается подвижность атомов составляющих соединения элементов, вследствие чего устраняются дефекты в зернах. Анизотропия параметров карбидов вольфрама меньше, чем для металлов.

К тому же данные материалы отличаются наилучшей для тугоплавких металлов упругостью, которая увеличивается с ростом пористости. Однако пластичность низкая (до 0,015%).

Микроструктура карбида вольфрама

Карбид вольфрама характеризуется стойкостью к многим кислотам, а также их смесям при обычной температуре, но растворим в некоторых кислотах при кипении. Не подвержен растворению в 20% и 10% гидроксиде натрия. Ввиду высокой летучести оксида вольфрама начинает окисляться при 500 — 700°C и завершает окисление при более 800°C.

Наконец, ввиду химической инертности данное соединение нетоксично.

Существует несколько методов получения рассматриваемого соединения.

Первый — углеродное насыщение вольфрама. В результате на поверхности вольфрамовых частиц образуется монокарбид. Из него диффундирует углерод, формируя слой полукарбидного состава.

Карбид вольфрамовое покрытие

Для данных работ применяют вольфрамовый порошок и сажу. Данные материалы смешивают в определенном соотношении, наполняют ими, утрамбовывая, емкости и ставят в печь. Во избежание окисления операцию производят в водородной среде, так как в результате взаимодействия данного элемента с углеродом при 1300°С формируется ацетилен.

Рассматриваемая технология предполагает формирование карбида вольфрама преимущественно за счет углерода. Температурный режим определяется гранулометрическим составом порошка.  Так, для мелкозернистого используется температурный интервал 1300 — 1350°С, для крупнозернистого — 1600°С. Длительность выдержки равна 1 — 2 ч.

В завершении получается карбид вольфрама, представленный немного спекшимися блоками.

Вольфрам

Второй вариант — углеродное восстановление вольфрамового оксида с карбидизацией. Данный метод предполагает совмещение карбидизации и восстановления. Процесс идет в среде CO и водорода.

Кроме того, карбид вольфрама получают из газовой фазы путем осаждения. Такое производство предполагает разложение при 1000°С карбонила вольфрама.

Восстановление вольфрамовых соединений с карбидизацией. Данную операцию осуществляют путем нагрева в водородной среде смеси паравольфрамата аммония либо вольфрамового ангидрида и вольфрамовой кислоты при 850 — 1000°С.

Наконец, выращивают кристаллы данного соединения из расплава. При этом используют смесь из Co и 40% монокарбида. Ее расплавляют при 1600°С в тигле из оксида алюминия. После гомогенизации температуру постепенно (1 — 3°С/мин) снижают до 1500°С и выдерживают 12 ч. Далее материал охлаждают и в кипящей соляной кислоте растворяют матрицу.

Предлагаем ознакомиться  Камни-талисманы для привлечения любви

Кроме того, большие монокристаллы (до 1 см) выращивают по методу Чохральского.

Применение

Благодаря приведенным выше свойствам, существует несколько сфер применения карбида вольфрама.

  1. Его применяют для выпуска деталей большой коррозионной и износоустойчивости и твердости: фрез, абразивных материалов, резцов, сверл, долот и т. д.
  2. Рассматриваемое соединение применяют для наплавки и газотермического напыления с целью повышения износостойкости путем создания твердой поверхности.
  3. Карбид вольфрама служит материалом для часовых браслетов, пулевых и снарядных сердечников, ювелирных изделий и т. д.

Применение карбида вольфрама

Оптимальным температурным режимом для предметов из него считают диапазон 200 — 300°С. Упругость данного материала обеспечивает его применение при знакопеременных нагрузках.

Сплавы

Карбид вольфрамовое покрытие

Ввиду плохой обрабатываемости карбид вольфрама применяют не в чистом виде, а создают сплавы с ним. Наиболее распространены твердые варианты с кобальтом. Также встречаются более сложные сплавы, включающие карбид тантала и титана. При этом вольфрам в любом случае преобладает, составляя 70 — 98%.

Ввиду высокой температуры плавления при создании сплавов рассматриваемого материала не используют такие технологии, как легирование, плавление и смешение, так как они нерентабельны. Вместо этого применяется порошковая металлургия.

Принцип данного метода состоит в использовании порошков основного металла и примеси. При этом они значительно отличаются температурой плавления. Их смешивают барабанно-шаровой мельницей и прессуют в близкую к целевой форму.

Ей придают монолитность путем спекания при температуре, меньшей точки плавления основного металла. Далее приведена последовательность выполнения.

Порошок карбида вольфрама измельчают до гранул целевого размера, предварительно увлажнив. Данный параметр определяется назначением материала, так как обуславливает конечные параметры изделий. Далее порошок смешивают со связующим веществом, представленным, например, кобальтом либо прочими металлами, и восковой мягкой смазкой, служащей для скрепления гранул после брикетирования.

После этого порошок сушат в распылительной или вакуумной сушилке, удаляя большую часть влаги. С целью улучшения текучести полученных гранул производят пеллетизацию, придавая им шарообразную форму.

Карбид вольфрамовое покрытие

Существует несколько технологий придания порошку формы. Наиболее распространены среди них литье под давлением и прессование. Новейшим методом является 3D-печать. В завершении формирования частицы скреплены связующим восковым веществом.

В рассматриваемом случае тугоплавким металлом является карбид вольфрама.

Параметры конечного материала определяются долей связующего вещества: чем его больше, тем выше износостойкость и прочность, чем меньше — тем больше твердость и хрупкость.

По завершении спекания предмет подвергают конечной обработке в виде шлифовки и т. д. К тому же на изделия из карбида вольфрама нередко наносят дополнительное защитное покрытие.

Вольфрамокобальтовые сплавы характеризуются минимальным напряжением на срез, значительной зависимостью параметров от доли кобальта, плохой обрабатываемостью. Первая особенность обуславливает неуместность таких материалов для применения в условиях сдвиговых деформаций.

Из-за плохой подверженности обработке перед использованием заготовки из них пластифицируют либо спекают. Наличие кобальта повышает эксплуатационные температуры карбидов вольфрама до 700 — 800°С. По данному параметру они превосходят все марки сталей, кроме жаропрочных.

Следует отметить, что, в отличие от чистого карбида вольфрама, его соединения в некоторых соотношениях с кобальтом токсичны.

Инструмент из карбида вольфрама

Представлены сведения о химических и физических свойствах карбидов металлов: таких, как гафний, хром, титан, вольфрам и других. Физические свойства карбидов сведены в отдельные таблицы, в которых указана их плотность, твердость, температура плавления и кипения, а также электрические и тепловые свойства.

Карбид гафния GfC

В таблице приведены свойства карбида металла гафния. Карбид гафния представляет собой соединение серого цвета с температурой плавления 3890°С и высокой плотностью, которая при комнатной температуре составляет 12600 кг/м3. Энергия кристаллической решетки GfC равна 117,2·105 кДж/кмоль.

Предлагаем ознакомиться  Карбиды и композитные порошковые материалы. Статья

Карбид гафния полностью растворяется в ортофосфорной, азотной и серной кислотах.  При температуре около 2000°С он начинает взаимодействовать с тугоплавкими металлами — такими, как молибден, вольфрам, тантал и ниобий.

Физические свойства карбида гафния GfC

Молекулярная масса 190,5
Тип решетки Кубическая
Плотность, кг/м3 12600
Температура плавления, °С 3890±150
Температура кипения, °С 4160
Средний ТКЛР в интервале 20-1200°С, α·106, град-1 6,1
Молярная теплоемкость при 20°С, кДж/(кмоль·град) 35,3

Применение высокой температуры плавления вольфрама

Вольфрам — самый тугоплавкий металл

Вольфрам занимает первое место среди тугоплавких металлов. Температура плавления вольфрама достигает 3387ºС. Это дает возможность применять материал в тех случаях, когда условия работы включают повышенную температуру. Благодаря этому свойству вольфрам не начнет переходить в жидкое состояние тогда, когда другие металлы уже расплавятся.

Это качество металла широко используется для производства:

  • нитей накаливания в приборах освещения;
  • электродов в аргонно-дуговых сварках;
  • элементов нагрева для высокотемпературных вакуумных печей сопротивления;
  • электронно-лучевых трубок в мониторах, осциллографах, на радиолокационных станциях;
  • электронных ламп.

Карбид вольфрама: свойства и обработка сплава

Вакуумные лампы в большинстве отраслей заменены на полупроводники, кроме производства высоковольтного, мощного, высокочастотного оборудования, а также космической техники. Наряду с преимуществами, тугоплавкий металл имеет и недостатки:

  • сложность механической обработки;
  • при температуре воздуха, превышающей 400°С, образуются оксидные пленки, а при наличии в среде серосодержащих веществ — сульфидные пленки;
  • требуются большие контактные давления для создания даже низкого сопротивления на участке электрического контакта.

Для нейтрализации описанных недостатков материал сплавляют с другими металлами, которые улучшают его свойство. Существует несколько таких соединений:

  1. Стеллит. В его состав, кроме вольфрама, входят кобальт и хром. Напылением или наплавлением он наносится на запчасти машин, инструментов, станков для увеличения износостойкости. Стеллит применяют для производства режущих инструментов.
  2. Быстрорежущие и инструментальные стали, из которых изготавливают сверла, фрезы, штампы. Кроме основных составляющих, указанные соединения могут содержать хром, марганец и кремний.
  3. Контактные сплавы. Легирующими металлами в них служат медь и серебро. Высокая электропроводимость этих материалов увеличивает данный показатель соединений, в которые они входят. Контактные сплавы вольфрама — материал, из которого производят выключатели, рубильники, электроды.
  4. Твердые сплавы. Их основой служит карбид вольфрама — соединение тугоплавкого металла с углеродом. Благодаря этим двум компонентам сплав отличается высокими твердостью и температурой плавления, износостойкостью. Перечисленные характеристики имеют значение для рабочих частей инструментов, используемых в бурении и резке. Массовая доля карбида вольфрама в твердом сплаве составляет 85–95%, оставшиеся проценты показывают содержание кобальта.

Карбиды вольфрама

Твердые сплавы рассмотрим более подробно. Тугоплавкий металл может образовывать разные карбиды: полукарбид и монокарбид. Они отличаются способностью растворять в себе тугоплавкие металлы и взаимодействием с разными кислотами.

Вольфрам — металл имеющий разные карбиды

Также монокарбид уступает поликарбиду в устойчивости и твердости.

А к преимуществам монокарбида можно отнести способность к образованию кристаллов в расплавленном вольфраме, что дает возможность использовать его в минералокерамических изделиях.

 Полукарбид обладает большей устойчивостью к температурам, легкостью внедрения в твердые растворы монокарбида с другими металлами (феррумом, кобальтом), повышенной износоустойчивостью.

Свойства соединений

Сплавы на основе карбида вольфрама обладают следующими преимуществами:

  • устойчивость к окислению;
  • пластичность, проявляемая под нагрузкой;
  • не вступает в реакцию со многими кислотами;
  • химически малоактивный, поэтому относится к низкотоксичным веществам;
  • отполированный сплав невозможно поцарапать;
  • не бледнеет со временем;
  • тугоплавкость;
  • повышенная твердость, которая не снижается при высоких температурах.

Карбид вольфрама: свойства и обработка сплава

Сплавы соединения металла вольфрама имеют множество преимуществ

Последние два свойства обусловлены сильными связями между атомами в кристаллах, из которых состоит соединение.

Есть несколько способов получения твердых сплавов: восстановление оксида вольфрама углеродом с дальнейшей карбидизацией; электролиз расплавленных солей; осаждение из газовой фазы; восстановление соединений тугоплавкого металла с дальнейшей карбидизацией; выращивание из расплава монокристаллов карбида вольфрама; насыщение тугоплавкого металла углеродом. Наибольшее распространение получила последняя технология. Твердые сплавы бывают двух видов:

  1. Литые. Их получают с помощью отливки. Для этого применяют вольфрам (в виде порошка); соединения карбида или его смеси с тугоплавким металлом, содержащие низкий процент углерода. Образованный сплав отличается высокой твердостью и износостойкостью. Но для литых соединений характерна хрупкость, поэтому их не везде можно использовать. Основные сферы применения — производство инструментов для бурения и для волочильных станков, на которых производят проволоку.
  2. Спеченные. Они состоят из карбида вольфрама и соединяющего металла, который выполняет связывающую функцию. В роли последнего часто используют кобальтовый, никелевый, молибденовый материалы.
Предлагаем ознакомиться  Подлочные камни полудрагоценные

Помимо значительной твердости, для указанных соединений характерна хрупкость и плохая обрабатываемость.

В связи с этим чистый карбид вольфрама применяется редко в основном он входит в состав твердых сплавов, в которых еще содержатся кобальт, титан, тантал, но массовая доля карбида при этом остается наибольшей — 70–98%. Технические характеристики твердого сплава, содержащего 98% карбида вольфрама:

  • предел прочности на изгиб — минимум 1 ГПа;
  • модуль Юнга составляет 969 ГПа;
  • предел прочности на сжатие — минимум 9,5 ГПа;
  • плотность достигает 15000–15500 кг/м³;
  • твердость по шкале Роквелла — минимум 90;
  • стойкость к эрозии составляет 0,3–0,8 мкмоль.

Изделия из сплавов карбида вольфрама обладают особой прочностью

Применение сплавов

Использование описанных соединений дает возможность изготовить детали, запчасти, инструменты с нужными техническими характеристиками. В зависимости от последних разнятся и сферы применения.

  1. Для деталей, подвергающихся во время работы большим нагрузкам со стороны сил трения. К ним относятся режущий, буровой и штамповый инструменты. Сплав наносится на поверхность детали. Таким образом, достигаются необходимые уровни прочности и пластичности за счет сглаживания перепадов механических параметров. Например, если материал инструмента мягкий, то уменьшаются механические напряжения в инструменте, а если хрупкий, то появляется защита от поверхностной кромки. Причиной последней служит истирающее воздействие откалывающихся частиц. Полученные с помощью сплава характеристики сохраняются и при высокой температуре. Это объясняется тугоплавкостью вольфрама и углерода.
  2. В качестве антикоррозийного покрытия. В этой технологии твердые сплавы вытесняют хром. Данное обстоятельство обусловлено легкостью нанесения твердых сплавов, возможностью применять их в тяжелых условиях, лучшей защитой от ударной нагрузки и износа по сравнению с хромированием.
  3. В ювелирных изделиях. Применению в этой отрасли сплав на основе карбида вольфрама обязан следующими своими свойствами: не тускнеет с течением времени; не ржавеет; после полировки на поверхности материала не появятся царапины, вмятины.

Карбид вольфрама: свойства и обработка сплава

Вольфрам — металл сплав которого применяется в разных сферах жизни человека

Именно благодаря синтезу свойств тугоплавкого вольфрама и твердого углерода появилась возможность создать широко востребованный сплав с новыми техническими характеристиками.

Часы Solarri из карбида вольфрама
Часы Solarri из карбида вольфрама

Впервые вольфрам был использован за пределами промышленной и военной деятельности менее десяти лет назад — в браслетах швейцарских часов. Чистый блеск, благородный серебристый оттенок и физические характеристики необычного материала покорили ценителей ювелирных изделий.

На сегодняшний день вольфрам является эффективной альтернативой золоту, серебру и платине, поскольку эти драгоценные металлы гораздо мягче и легко повреждаются в процессе носки украшений из них.

Брутальные сверхпрочные украшения из вольфрама сегодня выпускают многие ювелирные марки. Carraji радует своих поклонников массивными кольцами и браслетами с различными вставками и оригинальной гравировкой. Марка Spikes предлагает кольца с разноцветным покрытием, среди которых встречаются не только массивные и тяжелые изделия, но и довольно тонкие и изящные, которые легко подойдут и представительницам прекрасного пола.

Кольца Spikes из карбида вольфрама
Кольца Spikes из карбида вольфрама

Демократичная стоимость украшений из вольфрама (от 1500 рублей), их долговечность и стильный дизайн привлекают все больше покупателей. Производители выпускают как «чистые» вольфрамовые изделия, так и комбинированные с золотом и полудрагоценными камнями.

При всех своих бесспорных преимуществах у карбида вольфрама есть лишь один явный недостаток: не подверженный царапинам и потускнению металл может расколоться при сильном ударе о твердую или острую поверхность, поэтому хранить украшения из вольфрама все же следует бережно.

Карбид вольфрама: свойства и обработка сплава

Также владельцу кольца из вольфрама стоит знать, что если вдруг украшение стало так мало, что снять обычными способами (с мылом или обернув палец плотными рядами нитки) его не выходит, помочь в этом случае способны специальные тиски. Кольцо медленно сжимают до тех пор, пока оно не лопнет от давления. Вероятность травмы, несмотря на несколько пугающий процесс, минимальна.